

KNX T-B-UP Temperature Sensor

Article number 70350 (white)

Installation and Adjustment

1.	Description	. 5
1.1.	Deliverables	. 6
1.2.	Technical specifications	. 6
	1.2.1. Measuring accuracy	. 6
2.	Installation and start-up	. 7
2.1.	Installation notes	
2.2.	Installation position	. 7
2.3.	Construction of the sensor	. 8
	2.3.1. Housing	. 8
	2.3.2. Rear view sensor plate with connection	. 9
	Assembly of the sensor	. 9
2.5.	Notes on mounting and commissioning	. 9
3.	Addressing of the device at the bus	. 9
4.	Display and operation at the device	. 9
	Mode display and manual temperature controller	
4.2.	Change ambient temperature with the buttons	11
5.	Transfer protocol	13
5.1.	List of all communications objects	
6.	Parameter setting	
	Behaviour on power failure/ restoration of power	19
	General settings	
	Temperature measured values	
	Temperature threshold values	
	6.4.1. Temperature threshold value 1, 2, 3	
	Threshold value	
	Switching output	
	Block	
6.5.	Temperature PI control	
	6.5.1. General set point values	
	Set point Comfort	
	Set point for standby	
	Eco set point	
	Set point values for frost/heat protection (building protection)	
	General variables	
	6.5.2. Heating control level 1/2	
	6.5.3. Cooling control level 1/2	
66	Variable comparator	
0.0.	6.6.1. Control variable comparator 1/2	
67	Logic	
0.7.	AND logic	
	0	
	6.7.1. AND and/or OR logic 1/2/3/4/5/6/7/8	
	Block	33

Installation, inspection, commissioning and troubleshooting of the device must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

\wedge	Safety advice.
	Safety advice for working on electrical connections, components, etc.
DANGER!	indicates an immediately hazardous situation which will lead to death or severe injuries if it is not avoided.
WARNING!	indicates a potentially hazardous situation which may lead to death or severe injuries if it is not avoided.
CAUTION!	indicates a potentially hazardous situation which may lead to trivial or minor injuries if it is not avoided.
	! indicates a situation which may lead to damage to property if it is not avoided.
ETS	In the ETS tables, the parameter default settings are marked by underlining.

4

1. Description

The **Temperature sensor KNX T-B-UP** measures the room temperature. Via the bus, the sensor receives an external measuring value and processes it to an overall temperature (composite result) together with its own data. The **KNX T-B-UP** features two buttons that may be used to modify the room temperature (nominal temperature), to switch between the operating modes or as freely programmable bus buttons.

The **KNX T-B-UP** provides switching outputs with adjustable threshold values. The switching outputs and further communication objects can be linked by AND and OR logic gates. In addition, an integrated control variable comparator compares and outputs variables that were received via communication objects. The sensor features a PI control for heating and cooling.

The integrated display shows own value as well as data received via the bus (e.g. date, time of day). The housing is supplemented with a frame of the switch series used in buildings, and thus fits seamlessly into the interior fittings.

Functions:

- Temperature measurements
- **Composite value** from own measured value and external value (proportions are adjusted as a percentage)
- Display 1-3 lines (measured value or values received via bus) or display for temperature control (see also *Mode display and manual temperature controller*, page 10)
- **2 buttons**. Configuration as a bus button or to modify the nominal temperature and to switch between the operation modes (see also *Change ambient temperature with the buttons*, page 11)
- PI-controller for heating (one or two-stage) and cooling (one or two-stage) according to temperature. Regulation according to separate setpoints or basic setpoint temperature
- Threshold values can be adjusted per parameter or via communication
 objects
- 8 AND and 8 OR logic gates, each with 4 inputs. All switching events as well as 16 logic inputs (in the form of communications objects) are used as inputs for the logic gates. The output from each gate can be configured optionally as 1-bit or 2 x 8-bit
- **2 control variable comparators** to output minimum, maximum or average values. 5 inputs each for values received via communication objects

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.1. Deliverables

- Housing with display and sensor board
- Baseplate

Additionally required (not included in the deliverables):

- Junction box Ø 60 mm, 42 mm depth
- Frame (for insert 55 x 55 mm), compatible with the switch scheme used in the building

1.2. Technical specifications

Housing	Plastic (partially painted)
Colours	White, glossy (similar to RAL 9016 Traffic White)
Assembly	Flush mounting (Wall mounting in junction box Ø 60 mm, 42 mm depth)
Protection category	IP 20
Dimensions	Housing approx. 55 x 55 (W x H, mm), Mounting depth approx. 15 mm Baseplate approx. 71 x 71 (W x H, mm),
Total weight	approx. 50 g
Ambient temperature	Operation -10+50°C, storage -20+60°C
Ambient humidity	max. 95% RH, avoid condensation
Operating voltage	KNX bus voltage
Bus current	max. 6 mA, max. 10 mA when programming LED active
Data output	KNX +/- bus plug-in terminals
BCU type	Integrated microcontroller
PEI type	0
Group addresses	max. 254
Assignments	max. 254
Communication objects	176
Measurement range	-40+80°C
Resolution	0.1°C
Accuracy*	±0.5°C at -40+25°C ±1.5°C at -40+45°C

* Please note the information on *Measuring accuracy*, page 6

The product is compliant with the provisions of EU guidelines.

1.2.1. Measuring accuracy

Measurement variations from sources of interference (see chapter *Installation position*) must be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset). When **measuring temperature**, the self-heating of the device is considered by the electronics. The heating is compensated by reducing the measured temperture by the self-heating of 1.8°C. The indicated indoor temperature measured value approches the actual room temperature during a 2 hours heating period.

2. Installation and start-up

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

CAUTION! Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Installation position

The sensor will be installed concealed within a socket (Ø 60 mm, 42 mm deep).

The sensor may be installed and operated in dry interior rooms only. Avoid condensation.

When selecting an installation location, please ensure that the measurement results are affected as little as possible by external influences. Possible sources of interference include:

- Direct sunlight
- Drafts from windows and doors
- When mounted in-wall: Draft from ducts which lead from other rooms to the junction box in which the sensor is mounted
- Warming or cooling of the building structure on which the sensor is mounted, e.g. due to sunlight, heating or cold water pipes
- Connection lines which lead from warmer or colder areas to the sensor

Temperature variations from such sources of interference must be corrected in the ETS in order to ensure the specified accuracy of the sensor (temperature offset).

2.3. Construction of the sensor

2.3.1. Housing

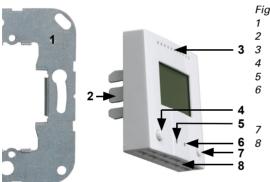
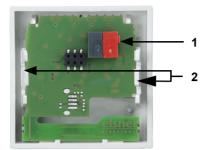



Fig. 1

- 1 Baseplate
- 2 Catches
- 3 Openings for air circulation
- 4 Key
- 5 Programming LED (recessed)
- Programming button (recessed) for teaching the device
- ' Key
- 8 Openings for air circulation (LOWER)

2.3.2. Rear view sensor plate with connection

Fig. 2 1 KNX terminal BUS +/-2 Catches

2.4. Assembly of the sensor

First of all fit the socket with connection. Seal inlet pipes to avoid infiltration. Then screw the base plate onto the socket and position the frame of the switching programme. Connect the bus line +/- (black-red plug) to the terminals provided on the sensor board of the sensor. Pin the sensor with the notches on to the metal frame, so that sensor and frame are fixed.

2.5. Notes on mounting and commissioning

Never expose the device to water (e.g. rain) or dust. This can damage the electronics. You must not exceed a relative humidity of 95%. Avoid condensation.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

3. Addressing of the device at the bus

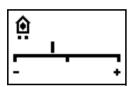
The device is supplied with the bus address 15.15.255. You can program another address into the ETS by overwriting the 15.15.255 address or by teaching via the programming button.

4. Display and operation at the device

Detailed specifications for the display and the use of the push buttons are set in the ETS.

Basically the display can show a two-row or three-row text (e. g. for measured values) or a temperature controller. You can switch between the two types by pressing one of the buttons, if this has not been disabled in the ETS.

9


4.1. Mode display and manual temperature controller

Depending on the ETS setting selected, the mode display will only display show the current target value, or the base target value setting with scale display. The manually adjustable range can be set in the ETS.

The following display options are available:

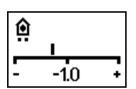
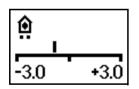
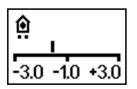

Fig. 3 Mode display with current target value and/or base target value

Fig. 4


Mode display with scale display for adjusting the base target value.

The control position in the image reads "Base target value reduced".

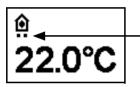

Fig. 5

Mode display with scale display and number. Shows the set target value change. The control position in the image reads "Base target value reduced to 1.0°".

Fig. 6

Mode display with scale display and range. Shows the possible adjustment range (as set in the ETS). The control position in the image reads "Base target value reduced".

Fig. 7


Mode display with scale display, range and number. Displays the possible adjustment range (as set in the ETS) and the set target value change.

The control position in the image reads "Base target value reduced to 1.0° ".

Symbols

٥	Comfort mode. Comfort (present) target tempera- ture will be used.	û •	Standby mode. Standby (absent during day) tar- get temperature will be used.
C	Eco mode. Night target temperature will be used.	Ô	Building protection mode. Building protection target temper- ature will be used. The symbol will blink when the mode has been activated but the activation delay has not yet expired.
} }}	Heating mode. Heating will be provided.	*	Cooling mode Cooling will be provided.

Priority (points)

Fig. 8

In "HVAC mode with 2x 8 bits" control mode, points are shown under the symbol, to indicate the running priority of the current mode.

One point: Priority 1/priority control. It is not possible to adjust the temperature automation system manually. Neither the target temperature nor the operating modes can be changed using the buttons on the unit.

Two points: Priority 2. The target temperature and operating mode can be changed using the buttons.

4.2. Change ambient temperature with the buttons

If the mode display is active, the target ambient temperature and the operating mode can be changed manually using the buttons. The button functions can be blocked in the ETS or be suppressed for Priority 1 operating modes. The individual operating modes can also be locked for manual selection in the ETS.

Decrease target temperature (-)	briefly press left button	Ambient temperature in the current mode is decreased. The sep-size is defined in the ETS (0.1°C to 5°C).
Increase target temperature (+)	briefly press right button	Ambient temperature in the current mode is increased. The sep-size is defined in the ETS (0.1°C to 5°C).

Change mode	press left or right button longer than 2 secs.	Changes between the operating modes Comfort, Standby, Eco and Building Protection (if deblocked in the ETS).
Extend Comfort mode	in Eco mode: press both buttons at the same time longer than 2 secs.	Switches from Eco to Comfort mode again for a certain time (e. g. if the rooms are used longer in the evening). The period is defined in the ETS (up to 10 hours). The time remaining in Comfort mode is displayed.

5. Transfer protocol

Units:

Temperatures in degrees Celsius Variables in %

5.1. List of all communications objects

Abbreviation flags:

- C Communication
- R Read
- W Write
- T Transfer
- U Update

No.	Name	Function	DPT	Flags
0	Software version	readable	217,001	CRT
1	Temperature malfunction sensor	Output	1,001	CRT
3	Outside temperature reading	Input	9,001	CW
4	Inside temperature reading	Output	9,001	CRT
5	Overall temperature reading	Output	9,001	CRT
6	Min./max. temperature value request	Input	1,017	CW
7	Minimum temperature reading	Output	9,001	CRT
8	Maximum temperature reading	Output	9,001	CRT
9	Reset min./max. temperature value	Input	1,017	CW
10	Temp. threshold value 1: Absolute value	Input/Output	9,001	C R W T U
11	Temp. threshold value 1: (1:+ 0:-)	Input	1,002	CW
12	Temp. threshold value 1: Switching delay from 0 to 1	Input	7,005	CW
13	Temp. threshold value 1: Switching delay from 1 to 0	Input	7,005	CW
14	Temp. threshold value 1: Switching output	Output	1,001	CRT
15	Temp. threshold value 1: Switching output block	Input	1,002	CW
16	Temp. threshold value 2: Absolute value	Input/Output	9,001	C R W T U
17	Temp. threshold value 2: (1:+ 0:-)	Input	1,002	CW
18	Temp. threshold value 2: Switching delay from 0 to 1	Input	7,005	CW

No.	Name	Function	DPT	Flags
19	Temp. threshold value 2: Switching delay from 1 to 0	Input	7,005	CW
20	Temp. threshold value 2: Switching output	Output	1,001	CRT
21	Temp. threshold value 2: Switching output block	Input	1,002	CW
22	Temp. threshold value 3: Absolute value	Input/Output	9,001	C R W T U
23	Temp. threshold value 3: (1:+ 0:-)	Input	1,002	CW
24	Temp. threshold value 3: Switching delay from 0 to 1	Input	7,005	CW
25	Temp. threshold value 3: Switching delay from 1 to 0	Input	7,005	CW
26	Temp. threshold value 3: Switching output	Output	1,001	CRT
27	Temp. threshold value 3: Switching output block	Input	1,002	CW
28	Reserve			
29	TR_1_Eco-Standby HVAC 1	Input	1,003	CW
30	TR_1_ Comfort Activation HVAC 2	Input	1,003	CW
31	TR_1_Frost/Heat activation	Input	1,003	CRWT
32	TR_1_Blocking object	Input	1,003	CW
33	TR_1_ Target value, current	Output	9,001	CRT
34	TR_1_ Switching object (0:Heat 1:Cool)	Input	1,002	CW
35	TR_1_ Target value, comfort heating	Input/Output	9,001	CRWT
36	TR_1_ Target value, comfort heating (1:+ 0:-)	Input	1,002	CW
37	TR_1_ Target value, comfort cooling	Input/Output	9,001	CRWT
38	TR_1_ Target value, comfort cooling (1:+ 0:-)	Input	1,002	CW
39	TR_1_ Target value_Basic offset	Input/Output	9,001	CRWT
40	TR_1_ Target value, Standby heating	Input/Output	9,001	CRWT
41	TR_1_ Target value, Standby heating (1:+ 0:-)	Input	1,002	CW
42	TR_1_Target value, Standby cooling	Input/Output	9,001	CRWT
43	TR_1_ Target value, Standby cooling (1:+ 0:-)	Input	1,002	CW
44	TR_1_ Target value, Eco heating	Input/Output	9,001	CRWT
45	TR_1_ Target value, Eco heating (1:+ 0:-)	Input	1,002	CW
46	TR_1_ Target value, Eco cooling	Input/Output	9,001	CRWT

No.	Name	Function	DPT	Flags
47	TR_1_ Target value, Eco cooling (1:+ 0:-)	Input	1,002	CW
48	TR_1_ Control variable heating (stage 1)	Output	5,001	CRT
49	TR_1_ Control variable heating stage 2	Output	5,001	CRT
50	TR_1_ Control variable cooling (stage 1)	Output	5,001	CRT
51	TR_1_ Control variable cooling stage 2	Output	5,001	CRT
52	TR_1_ Status heating 1 (1=ON 0=OFF)	Output	1,002	CRT
53	TR_1_ Status heating 2 (1=ON 0=OFF)	Output	1,002	CRT
54	TR_1_ Cooling status 1 (1=ON 0=OFF)	Output	1,002	CRT
55	TR_1_ Cooling status 2 (1=ON 0=OFF)	Output	1,002	CRT
56	TR_1_ Comfort Delay Status	Input/Output	1,002	CRWT
57	TR_1_Comfort extension time (in sec)	Input/Output	7,005	CRWT
58	TR_1_Belimo_Control variable	Output	5,001	CRT
135	Comparator 1 actuating variable: Input 1	Input	5,010	CW
136	Comparator 1 actuating variable: Input 2	Input	5,010	CW
137	Comparator 1 actuating variable: Input 3	Input	5,010	CW
138	Comparator 1 actuating variable: Input 4	Input	5,010	CW
139	Comparator 1 actuating variable: Input 5	Input	5,010	CW
140	Comparator 1 actuating variable: Output	Output	1,001	CRT
141	Comparator 1 actuating variable: Block	Input	1,002	CW
142	Comparator 2 actuating variable: Input 1	Input	5,010	CW
143	Comparator 2 actuating variable: Input 2	Input	5,010	CW
144	Comparator 2 actuating variable: Input 3	Input	5,010	CW
145	Comparator 2 actuating variable: Input 4	Input	5,010	CW

No.	Name	Function	DPT	Flags
146	Comparator 2 actuating variable: Input 5	Input	5,010	CW
147	Comparator 2 actuating variable: Output	Output	1,001	CRT
148	Comparator 2 actuating variable: Block	Input	1,002	CW
149	AND logic 1: 1-bit switching output	Output	1,002	CRT
150	AND logic 1: 8-bit output A	Output	5,010	CRT
151	AND logic 1: 8-bit output B	Output	5,010	CRT
152	AND logic 1: Block	Input	1,002	CW
153	AND logic 2: 1-bit switching output	Output	1,002	CRT
154	AND logic 2: 8-bit output A	Output	5,010	CRT
155	AND logic 2: 8-bit output B	Output	5,010	CRT
156	AND logic 2: Block	Input	1,002	CW
157	AND logic 3: 1-bit switching output	Output	1,002	CRT
158	AND logic 3: 8-bit output A	Output	5,010	CRT
159	AND logic 3: 8-bit output B	Output	5,010	CRT
160	AND logic 3: Block	Input	1,002	CW
161	AND logic 4: 1-bit switching output	Output	1,002	CRT
162	AND logic 4: 8-bit output A	Output	5,010	CRT
163	AND logic 4: 8-bit output B	Output	5,010	CRT
164	AND logic 4: Block	Input	1,002	CW
165	AND logic 5: 1-bit switching output	Output	1,002	CRT
166	AND logic 5: 8-bit output A	Output	5,010	CRT
167	AND logic 5: 8-bit output B	Output	5,010	CRT
168	AND logic 5: Block	Input	1,002	CW
169	AND logic 6: 1-bit switching output	Output	1,002	CRT
170	AND logic 6: 8-bit output A	Output	5,010	CRT
171	AND logic 6: 8-bit output B	Output	5,010	CRT
172	AND logic 6: Block	Input	1,002	CW
173	AND logic 7: 1-bit switching output	Output	1,002	CRT
174	AND logic 7: 8-bit output A	Output	5,010	CRT
175	AND logic 7: 8-bit output B	Output	5,010	CRT
176	AND logic 7: Block	Input	1,002	CW
177	AND logic 8: 1-bit switching output	Output	1,002	CRT
178	AND logic 8: 8-bit output A	Output	5,010	CRT
179	AND logic 8: 8-bit output B	Output	5,010	CRT
180	AND logic 8: Block	Input	1,002	CW
181	OR logic 1: 1-bit switching output	Output	1,002	CRT
182	OR logic 1: 8-bit output A	Output	5,010	CRT

No.	Name	Function	DPT	Flags
183	OR logic 1: 8-bit output B	Output	5,010	CRT
184	OR logic 1: Block	Input	1,002	CW
185	OR logic 2: 1-bit switching output	Output	1,002	CRT
186	OR logic 2: 8-bit output A	Output	5,010	CRT
187	OR logic 2: 8-bit output B	Output	5,010	CRT
188	OR logic 2: Block	Input	1,002	CW
189	OR logic 3: 1-bit switching output	Output	1,002	CRT
190	OR logic 3: 8-bit output A	Output	5,010	CRT
191	OR logic 3: 8-bit output B	Output	5,010	CRT
192	OR logic 3: Block	Input	1,002	CW
193	OR logic 4: 1-bit switching output	Output	1,002	CRT
194	OR logic 4: 8-bit output A	Output	5,010	CRT
195	OR logic 4: 8-bit output B	Output	5,010	CRT
196	OR logic 4: Block	Input	1,002	CW
197	OR logic 5: 1-bit switching output	Output	1,002	CRT
198	OR logic 5: 8-bit output A	Output	5,010	CRT
199	OR logic 5: 8-bit output B	Output	5,010	CRT
200	OR logic 5: Block	Input	1,002	CW
201	OR logic 6: 1-bit switching output	Output	1,002	CRT
202	OR logic 6: 8-bit output A	Output	5,010	CRT
203	OR logic 6: 8-bit output B	Output	5,010	CRT
204	OR logic 6: Block	Input	1,002	CW
205	OR logic 7: 1-bit switching output	Output	1,002	CRT
206	OR logic 7: 8-bit output A	Output	5,010	CRT
207	OR logic 7: 8-bit output B	Output	5,010	CRT
208	OR logic 7: Block	Input	1,002	CW
209	OR logic 8: 1-bit switching output	Output	1,002	CRT
210	OR logic 8: 8-bit output A	Output	5,010	CRT
211	OR logic 8: 8-bit output B	Output	5,010	CRT
212	OR logic 8: Block	Input	1,002	CW
213	Logic input 1	Input	1,002	CW
214	Logic input 2	Input	1,002	CW
215	Logic input 3	Input	1,002	CW
216	Logic input 4	Input	1,002	CW
217	Logic input 5	Input	1,002	CW
218	Logic input 6	Input	1,002	CW
219	Logic input 7	Input	1,002	CW
220	Logic input 8	Input	1,002	CW
221	Logic input 9	Input	1,002	CW

No.	Name	Function	DPT	Flags
222	Logic input 10	Input	1,002	CW
223	Logic input 11	Input	1,002	CW
224	Logic input 12	Input	1,002	CW
225	Logic input 13	Input	1,002	CW
226	Logic input 14	Input	1,002	CW
227	Logic input 15	Input	1,002	CW
228	Logic input 16	Input	1,002	CW
229	Display contrast (1 = higher 0 = lower)	Input	1,002	CRW
230	Date for display	Input	11,001	CUW
231	Time for display	Input	10,001	CUW
232	8-bit object 1 for display	Input	5.xxx	CRW
233	8-bit object 2 for display	Input	5.xxx	CRW
234	8-bit object 3 for display	Input	5.xxx	CRW
235	16-bit object 1 for display	Input	9.xxx	CRW
236	16-bit object 2 for display	Input	9.xxx	CRW
237	Text message 1 for display	Input	16,000	CRW
238	Text message 2 for display	Input	16,000	CRW
239	Display_Return approval	Input	1,001	CW
240	Pushbutton 1 long-term	Output	1,008	CRT
241	Pushbutton 1 short-term	Output	1,010	CRT
242	Pushbutton 1 switching	Input/Output	1,001	CRWT
243	Pushbutton 1 Relative dimming	Input/Output	3,007	CRWT
244	Pushbutton 1 encoder 8 bit	Output	5*	CRT
245	Pushbutton 1 encoder 16 bit	Output	9*	CRT
246	Pushbutton 1 Scenario	Output	18,001	CRT
247	Pushbutton 2 long-term	Output	1,008	CRT
248	Pushbutton 2 short-term	Output	1,010	CRT
249	Pushbutton 2 switching	Input/Output	1,001	CRWT
250	Pushbutton 2 Relative dimming	Input/Output	3,007	CRWT
251	Pushbutton 2 encoder 8 bit	Output	5*	CRT
252	Pushbutton 2 encoder 16 bit	Output	9*	CRT
253	Pushbutton 2 Scenario	Output	18,001	CRT

6. Parameter setting

6.1. Behaviour on power failure/ restoration of power

Behaviour following a failure of the bus power supply:

The device sends nothing.

Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters with the delays established in the "General settings" parameter block. The "Software version" communications object is sent once after 5 seconds.

6.2. General settings

Set the basic data transfer characteristics and select whether or not malfunction objects should be sent.

Send delay after power-up and programming for:			
Measured values <u>5 s</u> • • 2 h			
Threshold values and switching outputs	<u>5 s</u> • • 2 h		
Controller objects	5 s • <u>10 s</u> • • 2 h		
Logic outputs	5 s • <u>10 s</u> • • 2 h		
Maximum telegram quota	• 1 message per second		
	•		
	 <u>5</u> messages per second 		
	•		
	• 20 messages per second		
Use temp./humidity malfunction object	Yes • <u>No</u>		
Use CO2 malfunction object	Yes • <u>No</u>		

6.3. Temperature measured values

Use Offsets to adjust the readings to be sent.

Offset in 0.1°C -5050; 0

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired.

Use external reading	Yes • <u>No</u>
Ext. Reading proportion of the total reading	5% ● 10% ● ● <u>50%</u> ● ● 100%
Send internal and total reading	 <u>never</u> periodically On change on change and periodically

From change of (if sent on change)	0.1°C • <u>0.2°C</u> • • 5.0°C
Send cycle (if sent periodically)	<u>5 s</u> • • 2 h

Note: if an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading!

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature min/max. value" objects to reset the values to the current reading.

Note: The values are not retained after a reset.

6.4. Temperature threshold values

Activate the threshold values that you want to use here. The **Sensor KNX T-B-UP** provides three threshold values for temperature.

Use threshold value 1/2/3 Yes • No

6.4.1. Temperature threshold value 1, 2, 3

Threshold value

Set the threshold values directly in the application program using parameters, or define them via the bus using a communications object.

Threshold value setpoint using parameter:

Set the threshold values and hysteresis directly.

Threshold value setpoint using	Parameter • Communications object
<i>Temperature:</i> Threshold value in 0.1°C <i>Humidity:</i> Threshold value in % rH	-300 800; <u>200</u> 0100; <u>70</u>
Hysteresis of the threshold value in %	0 50; <u>20</u>

Threshold value setpoint using a communications object:

Beforehand, enter how the threshold value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined which will be valid until the 1st communication of a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a temperature range is given in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved in EEPROM, so that this is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setpoint using	Parameter • Communications object
The last communicated value should be retained	 <u>never</u> after restoration of power after restoration of power and programming
Start threshold value in 0.1°C valid till 1st communication	-300 800; <u>200</u>
Object value limit (min) in 0.1°C	<u>-300</u> 800
Object value limit (max) in 0.1°C	-300 <u>800</u>
Type of threshold change	Absolute value
Step size (upon increase/decrease change)	0.1°C • • <u>1°C</u> • • 5°C
Hysteresis of the threshold value in %	0 50; <u>20</u>

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply, the output is (LV = Threshold value)	 LV above = 1 LV - hysteresis below = 0 LV above = 0 LV - hysteresis below = 1 LV below = 1 LV + hysteresis above = 0 LV below = 0 LV + hysteresis above = 1 		
Delays can be set via objects (in seconds)	<u>No</u> • Yes		
Switching delay from 0 to 1 (when delay is not set using objects)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h		
Switching delay from 1 to 0 (when delay is not set using objects)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h		
Switching output sends	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically 		
Send cycle (is only sent if "periodically" is selected)	<u>5 s</u> • 10 s • 30 s • 2 h		

Block

The switching output can be blocked using an object. Define specifications here for the behaviour of the output when blocked.

Use switching output block	No • Yes
Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before 1st communi- cation	<u>0</u> • 1

Behaviour of the switching output		
With blocking	• <u>Do not send message</u> • send 0 • send 1	
On release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send messageSend switching output status
Switching output sends on change to 1	 Do not send message If switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message If switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	If switching output = 1 \rightarrow send 1
Switching output sends on change to 0 and periodically	If switching output = $0 \rightarrow \text{send } 0$

6.5. Temperature PI control

For an adequate regulation of the indoor temperature, comfort, standby, eco and building protection modes may be used.

Comfort when present,

Standby during short absences,

Eco as a night-time mode and

Frost/heat protection (building protection) during longer absences.

The settings for the temperature control include the set point temperatures for the individual modes. Objects are used to determine which mode is to be selected. A change of mode may be triggered manually or automatically (e.g. by a timer, window contact).

The **mode** may be switched with two 8 bit objects of different priority. Objects

"... HVAC mode (Prio 2)" for switching in everyday operation and

"... HVAC mode (Prio 1)" for central switching with higher priority.

The objects are coded as follows:

ID	Name	Encoding	Range	Use
20,102	DPT_HVACMode	field1 = HVACMode 0 = Auto 1 = Comfort 2 = Standby 3 = Economy 4 = Building Protection	[0 4]	HVAC

Alternatively, you can use three objects, with one object switching between eco and standby mode and the two others are used to activate comfort mode or frost/heat protection mode. The comfort object then blocks the eco/standby object, and frost/heat protection objects have the highest priority. Objects

"... Mode (1: Eco, 0: Standby)",

"... comfort activation mode" and

"... frost/heat protection activation mode"

Switch mode via	• two 8-bit objects (HVAC modes)
	• three 1-bit objects

Select the mode to be activated after reset (e.g. power failure, reset of the line via the bus). (Default).

Then configure a block of the temperature control by the blocking object.

Mode after reset	Comfort Standby Eco Building protection
Behaviour of the blocking object at value	• <u>1 = block 0 = release</u> • <u>0 = block 1 = release</u>
Blocking object value before 1st communication	0 • <u>1</u>

Determine when the current settings of the controls are to be transmitted to the bus. Periodic transmission is safer if a message does not reach a recipient. You may also set up periodical monitoring by the actuator with this setting.

Send actuating variables	 <u>on change</u> on change and periodically
cycle for periodical transmission only	5 s • • <u>5 min</u> • • 2 h

The status object shows the current status of the output variable (0 = OFF, >0 = ON) and may, for example, be used for visualisations or to switch off the heating pump as soon as the heating is off.

Send status objects	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
cycle for periodical transmission only	5 s • • <u>5 min</u> • • 2 h

Then define the type of setting. Heating and/or cooling may be controlled in two levels.

Type of control	One-stage heating Dual-speed heating Single-speed cooling Single-speed heating + Single-speed cool- ing
	Dual-speed heating + Single-speed cool-
	ing
	 Dual-speed heating + Dual-speed cooling

6.5.1. General set point values

You may enter separate set point values for each mode or use the comfort set point as a basic value.

If you are using the controls for both heating *and* cooling, you may also select the setting "separately with switching object". Systems used for cooling in the summer and for heating in the winter can thus be switched from one to the other.

If you are using the basic value, only the deviation from the comfort set point value is listed for the other modes (e. g., 2°C less for standby mode).

Setting the nominal values	 separate with switching object separate without switching object with comfort set point as a basis
Behaviour of the switching object at value only if switching object is used	• <u>0</u> = Heating <u>1</u> = Cooling • <u>1</u> = Heating <u>0</u> = Cooling
Switching object value before 1st communication only if switching object is used	<u>0</u> •1

The grades for the set point changes is predefined. Modifications may only remain active temporarily (do not save) or remain saved even after voltage recovery (and programming). This also applies to a comfort extension.

Grading for set point changes (in 0.1 °C)	1 50; <u>10</u>
Saving set point value(s) and comfort extension time	 not <u>after voltage recovery</u> after voltage recovery and programming (do not use for first start-up!)

The control may be manually reset to comfort mode from eco, or night mode. This allows the user to maintain the daily nominal value for a longer time, e.g. when having guests. The duration of this comfort extension period is set. After the comfort extension period is terminated, the system returns to eco mode.

Comfort extension time in seconds	136000; <u>3600</u>
(can only be activated from eco mode)	

Set point Comfort

Comfort mode is usually used for daytime mode when people are present. A starting value is defined for the comfort set point as well as a temperature range in which the nominal value may be modified.

Initial heating/cooling set point (in 0.1 °C) valid till 1st communication not upon saving the set point value after programming	-300800; <u>210</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort set point is used as the basis, a dead zone is determined for the control mode "heating *and* cooling" to avoid direct switching from heating to cooling.

Dead zone between heating and cooling	1100; <u>50</u>
only if both heating AND cooling are used.	

Set point for standby

Standby mode is usually used for daytime mode when people are absent.

If set point values are entered separately:

A starting set point value is defined as well as a temperature range in which the nominal value may be modified.

Initial heating/cooling set point (in 0.1 °C) valid till 1st communication	-300800; <u>210</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort set point value is used as a basis:

If the comfort set point value is used as a basis, the deviation from this value is set.

Reduce nominal heating value (in 0.1°C) for heating	0200; <u>30</u>
Increase nominal cooling value\r\n (in 0.1°C) for cooling	0200; <u>30</u>

Eco set point

Eco mode is usually used for night mode.

If set point values are entered separately:

A starting set point value is defined as well as a temperature range in which the nominal value may be modified.

Initial heating/cooling set point (in 0.1 °C) valid till 1st communication	-300800; <u>210</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort set point value is used as a basis:

If the comfort set point value is used as a basis, the deviation from this value is set.

Reduce nominal heating value (in 0.1°C) for heating	0200; <u>50</u>
Increase nominal cooling value\r\n (in 0.1°C) for cooling	0200; <u>60</u>

Set point values for frost/heat protection (building protection)

The building protection mode is used during longer absences. Set points for frost protection (heating) and heat protection (cooling) are determined which may not be modified from outside (no access via operating devices etc.). The building protection mode may be activated with delay, which allows you to leave the building before the controls switch to frost/heat protection mode.

Nominal value frost protection\r\n (in 0,1°C)	-300800; <u>70</u>
Nominal value heat protection (in 0,1°C)	-300800; <u>350</u>
Activation delay	no • 5 s • • <u>5 min</u> • • 2 h

General variables

This setting appears for the control types "Heating *and* Cooling" only. This is where you can decide whether to use a common variable for heating and cooling. If the 2nd level has a common variable, this is also where you determine the control mode of the 2nd level.

For heating and cooling	 separate variables are used common variables are used for Level 1 common variables are used for Level 2 common variables are used for Level 1+2
Control type only for level 2	• 2-point control • Pl control
Regulating variable of the 2nd Stage is on only for level 2	• 1-bit object • 8-bit object

6.5.2. Heating control level 1/2

If a heating control mode is configured, one or two setting sections for the heating levels are displayed.

On the 1st level, heating is controlled by a PI control which allows to either enter control parameters or select predetermined applications.

On the 2nd level (therefore only in case of a 2 level heating), heating is controlled via a Pl or a 2-point-control.

On level 2, the set point deviation between the two levels must furthermore be determined, i. e. the lowest set point value from which the 2nd level is then added (when values exceed this set point).

Set point difference between levels 1 and 2 (in 0.1°C) only for level 2	0100; <u>40</u>
Control type only for level 2 and if no common variables are used	• 2-point control • Pl control

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Set control using	Controller parameter
	 provided applications

Determine the deviation from the set point value which reaches maximum variable value, i. e. the point at which maximum heating power is activated.

The reset time shows how quickly the controls react to deviations from the set point value. In case of a short reset time, the controls react with a fast increase of the variable. In case of a long reset time, the controls react somewhat more gently and needs longer until the necessary variable for the set point deviation is reached.

You should set the time appropriate to the heating system at this point (note manufacturer instructions).

Maximum control variable is reached at set point/actual difference of (in °C)	0 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now determine what should be transmitted when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. Upon release, the control variable follows the rule again.

When blocked, the variable shall	<u>not be transmitted</u> <u>send a specific value</u>
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

In case of a common variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for frequent applications.

Control type	• Pl control
Set control using	Controller parameter provided applications
Application	 Warm water heating Floor heating Convection unit Electric heating
Maximum control variable is reached at set point/actual difference of (in °C)	Warm water heating: 5 Floor heating: 5 Convection unit: 4 Electric heating: 4
Reset time (in min.)	Warm water heating: 150 Floor heating: 240 Convection unit: 90 Electric heating: 100

Now determine what should be transmitted when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. Upon release, the control variable follows the rule again.

	not be transmittedsend a specific value
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

In case of a common variable for heating and cooling, 0 is always transmitted as a fixed value.

2-point-rule (only level 2):

The 2-point-rule is used for systems which are only set to ON or OFF.

<i>,</i> ,,	• 2-point control
is determined at a higher level for common	
variables	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range. Then determine whether a 1 bit object (on/off) or an 8 bit object (on with percentage/off) should be used.

Hysteresis (in 0.1°C)	0100; <u>20</u>
Actuating variable is a	• <u>1-bit object</u> • 8-bit object
Value (in %) <i>only for 8 bit objects</i>	0 <u>100</u>

Now determine what should be transmitted when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. Upon release, the control variable follows the rule again.

When blocked, the variable shall	not be transmittedsend a specific value
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

6.5.3. Cooling control level 1/2

If a cooling control mode is configured, one or two setting sections for the cooling levels are displayed.

On the 1st level, cooling is controlled by a PI control which allows to either enter control parameters or select predetermined applications.

On the 2nd level (therefore only in case of a 2 level cooling), cooling is controlled via a PI or a 2-point-control.

On level 2, the set point deviation between the two levels must furthermore be determined, i. e. the highest set point value from which the 2nd level is then added (when values exceed this set point).

Set point difference between levels 1 and 2 (in 0.1°C) only for level 2	0100; <u>40</u>
Control type only for level 2 and if no common variables are used	• 2-point control • Pl control

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Set control using	Controller parameter provided applications
	provided applications

Determine the deviation from the set point value which reaches maximum variable value, i. e. the point at which maximum cooling power is activated.

The reset time shows how quickly the controls react to deviations from the set point value. In case of a short reset time, the controls react with a fast increase of the variable. In case of a long reset time, the controls react somewhat more gently and needs longer until the necessary variable for the set point deviation is reached.

You should set the time appropriate to the cooling system at this point (note manufacturer instructions).

Maximum control variable is reached at set point/actual difference of (in °C)	0 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now determine what should be transmitted when the control is blocked. Upon release, the control variable follows the rule again.

When blocked, the variable shall	 not be transmitted send a specific value
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

In case of a common variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for a cooling ceiling

Control type	• PI control
Set control using	Controller parameter provided applications
Application	Cooling ceiling
Maximum control variable is reached at set point/actual difference of (in °C)	Cooling ceiling: 5
Reset time (in min.)	Cooling ceiling: 30

Now determine what should be transmitted when the control is blocked. Upon release, the control variable follows the rule again.

When blocked, the variable shall	not be transmittedsend a specific value
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

2-point-rule (only level 2):

The 2-point-rule is used for systems which are only set to ON or OFF.

Control type	• 2-point control
is determined at a higher level for common	
variables	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range. Then determine whether a 1 bit object (on/off) or an 8 bit object (on with percentage/off) should be used.

Hysteresis (in 0.1°C)	0100; <u>20</u>
Actuating variable is a	• <u>1-bit object</u> • 8-bit object
Value (in %) <i>only for 8 bit objects</i>	0 <u>100</u>

Now determine what should be transmitted when the control is blocked. Upon release, the control variable follows the rule again.

	not be transmittedsend a specific value
Value (in %) <i>only if a value is transmitted</i>	<u>0</u> 100

In case of a common variable for heating and cooling, 0 is always transmitted as a fixed value.

6.6. Variable comparator

The two integrated control variable comparators can output maximum, minimum and median values.

Use comparator 1/2 No • Yes

6.6.1. Control variable comparator 1/2

Determine what the control variable comparator should output, and activate the input objects to be used. Send behaviour and blocks can also be set.

Output delivered	 Maximum value Minimum value <u>Average value</u>
Use input 1/2/3/4/5	No • Yes
Output sends	 <u>on change of output</u> <u>on change of output</u> and periodically when receiving an input object when receiving an input object and periodically
Send cycle (is only sent if "periodically" is selected)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h
From change of (is only sent if "on change" is selected)	<u>1%</u> • 2% • 5% • 10% • 20% • 25%
Analysis of the blocking object	at value 1: block at value 0: release at value 0: block at value 1: release
Blocking object value before 1st communication	0•1
Behaviour of the switching output	
With blocking	 do not send message Send value
Sent value in %	0 100
on release, output is sent (with 2 seconds release delay)	 the current value the current value after receipt of an object

6.7. Logic

Activate the logic inputs and assign object values up to 1st communication. Then, activate the required logic outputs.

Use logic inputs	<u>No</u> • Yes
Object value prior to 1. communication for:	
Logic input 1 16	<u>0</u> •1

AND logic

Logic 1/2/3/4/5/6/7/8	not active • active
-----------------------	---------------------

OR logic

1	Logic 1/2/3/4/5/6/7/8	not active • active	
	209.0	<u>Hor douro</u> douro	

6.7.1. AND and/or OR logic 1/2/3/4/5/6/7/8

AND- and OR logic gates provide the same setting options. Assign the inputs to a switching event and set the send behaviour.

1. / 2. / 3. / 4. Input	 <u>do not use</u> all switching events which are available to the sensor (siehe AND logic connection inputs, Seite 34)")
Logic output sends	<u>one 1-bit object</u> • two 8-bit objects

If the logic output sends one 1-bit object:

Logic output sends	one 1 bit object
if logic = 1 → object value	<u>1</u> •0
if logic = 0 → object value	<u>0</u> •1

If the logic output sends two 8-bit objects:

Logic output sends	two 8 bit objects
Type of objects	 Value (0 255) Percent (0% 100%) Angle (0° 360°) Scenario load (0 127)
if logic = 1 → object A value	Setting dependent on "type of object"
if logic = 0 → object A value	Setting dependent on "type of object"
if logic = 1 → object B value	Setting dependent on "type of object"
if logic = 0 → object B value	Setting dependent on "type of object"

Send behaviour	 on change of logic on change of logic to 1 on change of logic to 0 on change of logic and periodically on change of logic to 1 and periodically on change of logic to 0 and periodically on change of logic + receipt of object on change of logic + receipt of object and periodically
Send cycle (is only sent if "periodically" is selected)	<u>5 s</u> • 10 s • 30 s • 1 min • • 2 h

Block

Logic outputs can also be blocked using objects.

Analysis of the blocking object	at value 1: block at value 0: release at value 0: block at value 1: release
Blocking object value before 1st communi- cation	<u>0</u> • 1
Behaviour of the switching output	
With blocking	 do not send message send value for logic = 0 send value for logic = 1

Behaviour on release of the switching output is dependent on send behaviour

Value of the parameter "Send behaviour":	Settings options "Behaviour of the switching output on release":
on change of logic	 do not send message send value for current logic status
on change of logic to 1	 do not send message if logic = 1 → send value for 1
on change of logic to 0	 do not send message if logic = 0 → send value for 0
on change of logic and periodically	send value for current logic status (no selection)
on change of logic to 1 and periodically	if logic = 1 → send value for 1 (no selection)
on change of logic to 0 and periodically	if logic = 0 → send value for 0 (no selection)
on change of logic and receipt of object	 do not send message Status object/s send/s
on change of logic and receipt of object and periodically	send value for current logic status (no selection)

6.7.2. AND logic connection inputs

do not use Logic input 1 Logic input 1 inverted Logic input 2 Logic input 2 inverted Logic input 3 Logic input 3 inverted Logic input 4 Logic input 4 inverted Logic input 5 Logic input 5 inverted Logic input 6 Logic input 6 inverted Logic input 7 Logic input 7 inverted Logic input 8 Logic input 8 inverted Logic input 9 Logic input 9 inverted Logic input 10 Logic input 10 inverted Logic input 11 Logic input 11 inverted Logic input 12 Logic input 12 inverted Logic input 13 Logic input 13 inverted Logic input 14 Logic input 14 inverted Logic input 15 Logic input 15 inverted Logic input 16 Logic input 16 inverted Temperature sensor malfunction = ON Temperature sensor malfunction = OFF Switching output temperature 1 Switching output temperature 1 inverted Switching output temperature 2 Switching output temperature 2 inverted Switching output temperature 3 Switching output temperature 3 inverted Switching output temperature 4 Switching output temperature 4 inverted Temp. control status changeover switching object Temp. control status changeover switching object inverted Temp. control status heating 1

Temp. control status heating 1 inverted Temp. control status heating 2 Temp. control status heating 2 inverted Temp. control status cooling 1 Temp. control status cooling 1 inverted Temp. control status cooling 2 Temp. control status cooling 2 inverted Temp. control status night reduction Temp. control status night reduction inverted Temp. control status night reduction inverted Temp. control status window

Temp. control status window inverted

6.7.3. Connection inputs of the OR logic

The OR logic connection inputs correspond to those of the AND logic. In addition the following inputs are available for the OR logic:

AND logic 1 AND logic output 1 inverted AND logic output 2 AND logic output 2 inverted AND logic output 3 AND logic output 3 inverted AND logic output 4 AND logic output 4 inverted AND logic output 5 AND logic output 5 inverted AND logic output 6 AND logic output 6 inverted AND logic output 7 AND logic output 7 inverted AND logic output 8 AND logic output 8 inverted

6.8. Display settings

Values and text can be displayed over two or three lines in the display. These can be internal readings or external data received from the bus. The input objects must be activated in order to be able to select external data.

Two-line display: Line 1 upper case, Line 2 upper case Three-line display: Line 1 lower case, Line 2 upper case, Line 3 lower case

You can switch from either display to the thermostat display by pressing any pushbutton. Alternatively, the target value and/or temperature control can be permanently displayed.

Addressing of the device at the bus, page 9

Use object "display contrast"	No • Yes
Display mode	 two lines (with optional thermostat display) three lines (with optional thermostat display) Permanent thermostat

For **manual temperature control**, the parameter "Use thermostat display upon key press" must be set to "Yes". In addition, you will need to set the pushbuttons which will be used for temperature control.

The following further parameters will then appear:

Temperature controller display when using pushbutton (only possible if the pushbuttons are also set to "For temperature control")	<u>No</u> • Yes
Type of temperature target value display (only for active thermostat display)	 Current target value Basic setpoint Basic setpoint as bar chart Basic setpoint as bar chart with count Basic setpoint as bar chart with range Basic setpoint as bar chart with range and count (see also Addressing of the device at the bus, page 9)

When switching from the two- or three line value display to the thermostat display, the display duration can also be set and return approved/blocked by means of an object.

Display duration in seconds for Temperature controller display (only for thermostat display after pressing a pushbutton)	2240; <u>5</u>
Use object "Return approval" (only for thermostat display after pressing a pushbutton)	<u>No</u> •Yes
Object evaluation (only if Return approval object is used)	1= Allow return 0=Return not allowed 1= Allow return 0=Return not allowed
Object value prior to initial communica- tion (only if object Return approval is used)	<u>1</u> •0

If **Values** (two or three lines) are displayed, the contents of the lines must be defined and where required, the input objects activated for external values.

Use input objects	<u>No</u> • Yes
Selection for content	Do not display
	 Inside temperature
	Outside temperature
	Total temperature
	 Current thermostat target value
	 Datum (lower case only)
	• Time
	 Value of 8 bit object 1/2/3
	Value of 16-bit object 1/2 (lower case only)
	• Text message 1/2 (lower case only)

6.9. Pushbutton

The integrated pushbuttons can be used as bus buttons (button interface) or for setting the temperature basic target values.

When used for temperature control, the increment per button press can be set in the temperature PI control.

Pressing the pushbuttons at the same time switches the unit from Eco-mode temporarily into comfort mode. The delay time for manual comfort mode is also set in the temperature PI control.

- Addressing of the device at the bus, page 9
- Temperature PI control, *General variables*, page 26

Use pushbutton	• as button interface
	 for temperature control

If certain modes should not be selected using pushbuttons, these can be blocked for manual selection here. By default, "Building protection" mode cannot be selected ("No").

The following modes can be selected by	No • Yes
pushbutton:	
Comfort/Standby/Eco/Building protection	Yes/Yes/No

When used as a pushbutton interface, two further menus with settings options will appear.

6.9.1. Pushbutton interface 1/2

Activate the pushbutton interfaces as desired. Pushbutton interface 1 is linked to the left-hand pushbutton, interface 2 to the right-hand button.

Use pushbutton interface <u>No</u> • Yes

Select pushbutton function:

Function	Switch Changeover switch Shutter Roller blind Awning Window
	• Dimmer
	• 8-bit encoder
	16-bit encoder
	Scenario recall

Switch:

If the pushbutton is to be used as a switch, select the function "Switch" and define which values are sent when the button is pressed/released, and when these are sent.

Function	Switch
Command when pressing the pushbutton	• send 0 • send 1 • Do not send message
Command when releasing the pushbutton	• send 0_ • send 1 • Do not send message
Send value	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Value send all (is only sent if "periodically" is selected)	5 s 2 h

Changeover switching:

If the pushbutton is to be used for changeover switching, select the function "Changeover switching" and define which values are sent when the button is pressed/released, and when these are sent.

Function	Changeover switching
Command when pressing the pushbutton	Changeover switchingDo not send message
Command when releasing the pushbutton	Changeover switchingDo not send message

Shutter, blind, awning or window control:

if you want to actuate a drive using a pushbutton, select the "shutter", "awning", "blind", or "window" function and define the pushbutton function and control mode.

Function	Shutter/blind/awning	/window
Pushbutton function	Up • Down Up • Down • Up/Down On • Off • On/Off Open • Close • Open/ Close	(Shutter) (Blind) (Awning) (Window)
Control mode*	• <u>Standard</u> • Standard inverted • Comfort mode • Dead man's switch	

* For further details about settings, please see 💷 *Control modes for drive control*, page 40

Dimmer:

If the pushbutton should be used as a dimmer, select the function "Dimmer" and define the pushbutton function, time interval (switching/dimming) and if required, the repeat interval for extended pressing of the pushbutton.

Bus function	Dimmer
Pushbutton function	Brighter • darker • Brighter/darker
Time between switching and dimming in 0.1 seconds	150; <u>5</u>
Repetition of the dimming command	<u>no</u> •yes
Repetition of the dimming command upon extended button actuation (only if dimmer command is repeated)	every 0.1 s • every 2 s; <u>every 1 s</u>
Dimming by (only if dimmer command is repeated)	1.50% • 3% • <u>6%</u> • 12,50% • 25% • 50%

8 bit encoder:

If a fixed 8-bit value should be sent using the pushbutton, select the "8-bit encoder" function and define the value to be sent

Bus function	8 bit encoder
Value	<u>0</u> 255

16 bit encoder:

If a fixed 16-bit value should be sent using the pushbutton, select the "16-bit encoder" function and define the value to be sent

Bus function	16 bit encoder
Value in 0.1	-67076006707600; <u>0</u>

Scenario control:

If a scenario should be loaded using the pushbutton, select the "Scenario load" function and define a scenario number.

Bus function	Scenario recall
Scenario no.	<u>0</u> 127

6.9.2. Control modes for drive control

Standard:

If briefly operated, the drive will move incrementally or stops. If operated longer, the drive will move up to the end position. The time difference between "short" and "long" is set individually.

Control mode	Standard
Behavior during button operation: short = stop/increment long = Up or Down	
Time between short and long in 0.1 seconds	150; <u>10</u>

Standard inverted:

When pushed shortly, the drive moves up to the end position. When pushed for longer, the drive moves incrementally or stops. The time difference between "short" and "long" and the repeat interval is set individually.

Control mode	Standard inverted
Behavior during button operation: short = Up or Down long = Stop/Step	
Time between short and long in 0.1 seconds	150; <u>10</u>
Repeat the step command for a long button press	every 0.1 s • every 2 sec; every 0.5 sec

Comfort mode:

In the **comfort mode** actuating the button briefly, a bit longer and long will trigger different responses of the drive. The time intervals are set individually.

Short actuation (shorter than Time 1): The drive is positioned step-wise and stopped. **Holding it slightly longer** (longer than Time 1, but shorter than Time 1+2): Drive running. Drive stops when the button is released.

Long holding (release after Time 1+2 runs out): Drive moves independently to the end position. The movement can be interrupted by a short tap.

Fig. 9 Time interval comfort mode diagram

Time 1 Time 2	
0 1	1 + 2
Point in time 0:	Actuate of button, start of time 1
<i>Release before time 1 expired:</i> <i>Point in time 1:</i>	step (or stop if drive is moving) End of time 1, start of time 2 Moving command
<i>Release after time 1 expired but before time 2 expires:</i>	Stop
Release after time 1 + 2 expired:	Move into end position
Control mode	Comfort mode
Behavior during button operation: Button is pushed and released before time 1 expired = stop/step held longer than time 1 = Up or Down released between time 1 and 1-2= stop released after time 1 +2 = no more stop	
Time 1	0.0s • 2 s; <u>0.4 s</u>
Time 2	0 s • 2 s; <u>2 s</u>

Dead man's switch:

The drive moves as soon as the button is actuated and stops as soon as the button is released.

Control mode	Dead man's switch
Behavior during button operation: Push button = Up or Down command Release button = Stop command	

Elsner Elektronik GmbH Control and Automation Engineering Sohlengrund 16

Sohlengrund 16 75395 Ostelsheim Germany

Phone +49 (0) 70 33 / 30 945-0 info@elsner-elektronik.de Fax +49 (0) 70 33 / 30 945-20 www.elsner-elektronik.de